挤入 PyTorch(挤入.PyTorch...)
请我喝杯咖啡☕
*我的帖子解释了 unsqueeze()。
squeeze() 可以从零个或多个元素的 0d 或多个 d 张量中获取删除零个或多个维度的零个或多个元素的 0d 或多个 d 张量,如果大小为 1,如下所示:
*备忘录:
- 挤压()可以与火炬或张量一起使用。
- 第一个参数(输入)使用 torch 或使用张量(必需类型:int、float、complex 或 bool 的张量)。
- 带有 torch 的第二个参数或带有张量的第一个或多个参数是暗淡的(可选类型:int、int 元组或 int 列表):
*备注:
- 每个数字必须是唯一的。
- 它可以删除特定的零个或多个尺寸为1的维度。
- 如果大小不为 1,即使设置零个或多个维度也不会被删除。
PHP
import torch
my_tensor = torch.tensor([[[[0], [1]],
[[2], [3]],
[[4], [5]]]])
torch.squeeze(input=my_tensor)
my_tensor.squeeze()
torch.squeeze(input=my_tensor, dim=(0, 3))
my_tensor.squeeze(dim=(0, 3))
my_tensor.squeeze(0, 3)
torch.squeeze(input=my_tensor, dim=(0, 1, 3))
my_tensor.squeeze(dim=(0, 1, 3))
my_tensor.squeeze(0, 1, 3)
etc.
torch.squeeze(input=my_tensor, dim=(0, 1, 2, 3))
my_tensor.squeeze(dim=(0, 1, 2, 3))
my_tensor.squeeze(0, 1, 2, 3)
etc.
# tensor([[0, 1],
# [2, 3],
# [4, 5]])
torch.squeeze(input=my_tensor, dim=0)
torch.squeeze(input=my_tensor, dim=-4)
torch.squeeze(input=my_tensor, dim=(0,))
torch.squeeze(input=my_tensor, dim=(-4,))
torch.squeeze(input=my_tensor, dim=(0, 1))
torch.squeeze(input=my_tensor, dim=(0, 2))
torch.squeeze(input=my_tensor, dim=(0, -2))
torch.squeeze(input=my_tensor, dim=(0, -3))
torch.squeeze(input=my_tensor, dim=(1, 0))
etc.
torch.squeeze(input=my_tensor, dim=(0, 1, 2))
etc.
# tensor([[[0], [1]],
# [[2], [3]],
# [[4], [5]]])
torch.squeeze(input=my_tensor, dim=1)
torch.squeeze(input=my_tensor, dim=2)
torch.squeeze(input=my_tensor, dim=-2)
torch.squeeze(input=my_tensor, dim=-3)
torch.squeeze(input=my_tensor, dim=())
torch.squeeze(input=my_tensor, dim=(1,))
torch.squeeze(input=my_tensor, dim=(2,))
torch.squeeze(input=my_tensor, dim=(-2,))
torch.squeeze(input=my_tensor, dim=(-3,))
torch.squeeze(input=my_tensor, dim=(1, 2))
etc.
# tensor([[[[0], [1]],
# [[2], [3]],
# [[4], [5]]]])
torch.squeeze(input=my_tensor, dim=3)
torch.squeeze(input=my_tensor, dim=-1)
torch.squeeze(input=my_tensor, dim=(3,))
torch.squeeze(input=my_tensor, dim=(-1,))
torch.squeeze(input=my_tensor, dim=(1, 3))
torch.squeeze(input=my_tensor, dim=(1, -1))
torch.squeeze(input=my_tensor, dim=(2, 3))
torch.squeeze(input=my_tensor, dim=(2, -1))
torch.squeeze(input=my_tensor, dim=(3, 1))
etc.
torch.squeeze(input=my_tensor, dim=(1, 2, 3))
etc.
# tensor([[[0, 1],
# [2, 3],
# [4, 5]]])
my_tensor = torch.tensor([[[[0.], [1.]],
[[2.], [3.]],
[[4.], [5.]]]])
torch.squeeze(input=my_tensor)
# tensor([[0., 1.],
# [2., 3.],
# [4., 5.]])
my_tensor = torch.tensor([[[[0.+0.j], [1.+0.j]],
[[2.+0.j], [3.+0.j]],
[[4.+0.j], [5.+0.j]]]])
torch.squeeze(input=my_tensor)
# tensor([[0.+0.j, 1.+0.j],
# [2.+0.j, 3.+0.j],
# [4.+0.j, 5.+0.j]])
my_tensor = torch.tensor([[[[True], [False]],
[[False], [True]],
[[True], [False]]]])
torch.squeeze(input=my_tensor)
# tensor([[True, False],
# [False, True],
# [True, False]])
以上就是挤入 PyTorch的详细内容,更多请关注知识资源分享宝库其它相关文章!